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Introduction Data

It has been shown by Gussone et al. (2003, 2005) that calcium
isotope fractionation in inorganic and simple biogenic
precipitates depends on mineralogy. Aragonite is depleted by
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aragonite. Calcitic spicules of Calcarea (sponges) are 0.2 %o
depleted in “Ca compared to "simple" biogenic calcite.
Temperature dependencies of these “anomalous” carbonates,

A benthic gastropod (Tasman Sea)
and the aragonite layer of the bivalve

The §"*“Ca values of different reef-
building coral species (cultured

Calcium isotopes of modern sclerosponges,
pteropods, brachiopods, red algae and the

Early Messinian marine aragonite cements from

Marlﬂé Salento Peninsula (Italy) and from Crete show

however, show the common slope (0.015%0/K).

The organisms producing these "anomalous" calcium isotope
compositions are characterized by sophisticated calcification
mechanisms, designed to produce carbonates at very high
precipitation rates and in confined body compartments. We
propose that a biological fractionation effect (Gussone et al.
2006) controls the 5*““’Ca of these skeletons. The biological
fractionation is independent of the calcification processes and
probably occurs during the transcellular transport of calcium.

outer layer of Mytilus from various shallow
water environments.

Aragonite and calcite values define two
separate temperature trend lines that are in
good agreement with the fractionation trends
described for inorganic aragonite (Gussone
et al., 2003) and inorganic calcite (Marriott
et al., 2004) (with 95% confidence bands).
Aragonite is depleted in 5*“’Ca by about
0.7%o with respect to calcite.
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. similar 5"“’Ca values as modern aragonitic

sclerosponges. The foraminiferal "“Ca
reconstruction of Heuser et al. (2005) indicates
a calcium isotopic composition of Messinian
seawater similar to modern seawater.

Calcium isotope fractionation of these cements
was therefore similar to that of modern
sclerosponge aragonite and inorganic aragonite.
- Blocky calcite spar (Salento) agrees with

0 calcitic foraminifera.

Acropora, wild Pavona from

¥ Galapagos and Porites from the Red
Sea) agree very well. However, the
coral calcium isotope ratios are
significantly higher than inorganic and
sclerosponge aragonite 8"**“Ca. The
coral 8"*Ca- temperature dependence,
on the other hand, agrees well with the
"simple" aragonites and calcites.

Mytilus (Baltic Sea) show 8"*“Ca

Calcitic sponge spicules (Calcarea,
E Australia) are slightly depleted in
&""°Ca compared to "simple"
biogenic calcite. These spicules are
formed inside the sponge tissue.

Model for Inorganic Ca Isotope Fractionation

Biological Ca Isotope Fractionation

Conclusions

values that lie on the coral trend line.

Rate Dependent Fractionation

Crystal

Fluid

It has been shown by Lemarchand et al.
(2004) and Gussone et al. (2005) that Ca

The rate dependent calcium isotope fractiona-
tion model can explain the observed fractio-

Ca” Transport Through a Coral

* Ca isotope fractionation of inorganic CaCOj precipitation
and "simple" biological calcification is well explained by a
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