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Introduction Data

Inorganic and Simple Biological Calcification Complex Biologically Controlled Calcification
It has been shown by Gussone et al. (2003, 2005) that calcium
isotope fractionation in inorganic and simple biogenic
precipitates depends on mineralogy. Aragonite is depleted by
about 0.6‰ with respect to calcite, i.e. fractionation with
respect to seawater increases from calcite to aragonite. This
fractionation has been observed in experimental inorganic
precipitates, in early marine cements and in "simple" biogenic
carbonates (e.g. sclerosponges, brachiopods). The temperature
dependence of isotope fractionation is similar in calcites and
aragonites (0.015‰/K). It can be explained by the

temperature-control on the CO chemistry, which controls

CaCO precipitation rate (Lemarchand et al. 2004).
3

3

2-

Calcium isotopes of modern sclerosponges,
pteropods, brachiopods, red algae and the
outer layer of Mytilus from various shallow
water environments.
Aragonite and calcite values define two
separate temperature trend lines that are in
good agreement with the fractionation trends
described for inorganic aragonite (Gussone
et al., 2003) and inorganic calcite (Marriott
et al., 2004) (with 95% confidence bands).

Aragonite is depleted in Ca by about
0.7‰ with respect to calcite.

δ44/40

The rate dependent calcium isotope fractiona-
tion model can explain the observed fractio-
nation of inorganic and simple biological
calcification. However, as shown in the dia-
gram to the left, neither the coral values nor
the aragonite values can be a conse-
quence of calcification rate effects. Observed
calcium isotope fractionation is much too
strong for the very high precipitation rates of
these skeletal materials. On the other hand,
similar fractionation was observed in
coccolith calcite (Gussone et al. 2006).

Mytilus

F

F

F

F

Ca isotope fractionation of inorganic CaCO precipitation

and "simple" biological calcification is well explained by a
rate dependent equilibration mechanism (Lemarchand et al.
2004) and mineralogy (Gussone et al. 2005).

Biologically controlled carbonate precipitation of corals,
some molluscs and sponge spicules fractionates calcium
isotopes by a different mechanism. Fractionation in

Ca/ Ca is -1.1‰ at 25°C and is probably independent of
mineralogy and precipitation rate. Temperature dependence
is similar as for inorganic precipitation.

The latter fractionation most likely occurs during the
passage of Ca ions through biological membranes
(Gussone et al., in press).

This biological fractionation mechanism may be
widespread among marine carbonate producers, especially
among organisms with high CaCO precipitation rates.
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44 40

The sketch above shows how Ca ions
are transported through the tissue
layers of a coral to the site of
calcification in a thin layer of fluid
between the calicoblastic layer and
the skeleton (the subcalicoblastic
layer). The subcalicoblastic layer is
sealed from diffusional Ca fluxes

from seawater ( Ca experiments,
Tambutté et al. 1996; higher Ca
concentration than seawater, Al-
Horani et al. 2003). The volume of
the subcalicoblastic layer is sufficient
to maintain typical precipitation rates
for only a few seconds. Therefore all
Ca used for skeleton formation has to

be transported through the coral tissue
with very high flux rates.
Ca isotope fractionation most likely
occurs during the passage through cell
membranes as recently observed in
coccolithophorids by Gussone et al.
(in press) with a value of

.

45

1000ln( ) = -1.1‰ at 25°Cαbiol

It has been shown by Lemarchand et al.
(2004) and Gussone et al. (2005) that Ca
isotope fractionation during precipitation of
CaCO is rate dependent. Isotopically

equilibrated calcium mixes with
unequilibrated calcium in an interface layer
between fluid and crystal. The faster the
precipitation, the less time is available for
equilibration. The fraction of equilibrated Ca
(x) incorporated into the crystal decreases.
An apparent fractionation factor arises from
the mixing of equilibrated and unequilibrated
Ca as a function of precipitation rate.

The fraction of equilibrated Ca (x) depends
on the time available for equilibration (t)

x = 1 - e ,

which is limited by the advancing crystal
growth surface and the diffusional exchange
of Ca between interface layer and fluid.

A fit of this relationship to measured data
allows to estimate the equilibrium
fractionation values of calcite (-1.2 ‰) and
aragonite (-1.7 ‰) and the equilibration time
constant (63% equilibration during 1.5 min.).

3

-t/τ

Early Messinian marine aragonite cements from
Salento Peninsula (Italy) and from Crete show

similar Ca values as modern aragonitic

sclerosponges. The foraminiferal Ca
reconstruction of Heuser et al. (2005) indicates
a calcium isotopic composition of Messinian
seawater similar to modern seawater.
Calcium isotope fractionation of these cements
was therefore similar to that of modern
sclerosponge aragonite and inorganic aragonite.
Blocky calcite spar (Salento) agrees with
calcitic foraminifera.

δ
δ

44/40

44/40

The Ca values of different reef-
building coral species (cultured

, wild from
Galapagos and from the Red
Sea) agree very well. However, the
coral calcium isotope ratios are
significantly higher than inorganic and

sclerosponge aragonite Ca. The

coral Ca- temperature dependence,
on the other hand, agrees well with the
"simple" aragonites and calcites.
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δ
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44/40

44/40

Acropora Pavona
Porites

A benthic gastropod (Tasman Sea)
and the aragonite layer of the bivalve

(Baltic Sea) show Ca
values that lie on the coral trend line.
Mytilus δ44/40

Calcitic sponge spicules (Calcarea,
E Australia) are slightly depleted in

Ca compared to "simple"
biogenic calcite. These spicules are
formed inside the sponge tissue.

δ44/40

We found several groups
of organisms producing
carbonates that deviate
from this simple isotope
fractionation scheme:
Several species of
scleractinian corals, a
benthic gastropod shell
and the aragonitic parts
of (bivalvia) areMytilus

about 0.4‰ enriched in Ca with respect to inorganic
aragonite. Calcitic spicules of Calcarea (sponges) are 0.2 ‰

depleted in Ca compared to "simple" biogenic calcite.
Temperature dependencies of these “anomalous” carbonates,
however, show the common slope (0.015‰/K).

The organisms producing these "anomalous" calcium isotope
compositions are characterized by sophisticated calcification
mechanisms, designed to produce carbonates at very high
precipitation rates and in confined body compartments. We
propose that a effect (Gussone et al.

2006) controls the Ca of these skeletons. The biological
fractionation is independent of the calcification processes and
probably occurs during the transcellular transport of calcium.

44

44

44/40

biological fractionation

δ
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Rate Dependent End Member Mixing

(Lemarchand et al. 2004, Gussone et al. 2005)
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τ: time constant
t: time available
(depends on rate)
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